Does One-Against-All or One-Against-One Improve the Performance of Multiclass Classifications?
نویسندگان
چکیده
One-against-all and one-against-one are two popular methodologies for reducing multiclass classification problems into a set of binary classifications. In this paper, we are interested in the performance of both one-against-all and one-against-one for classification algorithms, such as decision tree, naïve bayes, support vector machine, and logistic regression. Since both one-against-all and oneagainst-one work like creating a classification committee, they are expected to improve the performance of classification algorithms. However, our experimental results surprisingly show that one-against-all worsens the performance of the algorithms on most datasets. Oneagainst-one helps, but performs worse than the same iterations of bagging these algorithms. Thus, we conclude that both one-against-all and one-against-one should not be used for the algorithms that can perform multiclass classifications directly. Bagging is better approach for improving their performance.
منابع مشابه
A comparison of methods for multiclass support vector machines
Support vector machines (SVMs) were originally designed for binary classification. How to effectively extend it for multiclass classification is still an ongoing research issue. Several methods have been proposed where typically we construct a multiclass classifier by combining several binary classifiers. Some authors also proposed methods that consider all classes at once. As it is computation...
متن کاملSensitivity Assessment of Lightning Protection Device Aging Effect on Distribution Substation Insulation
Insufficient electrical endurance of equipment and insulation failure against overvoltage is one of the most effective reasons for failure the power line. Lightening, switching or other disruptive parameters can cause line outage or distribution substation failure. There are different devices used to improve the safety, reliability, and power quality of the system. Surge arresters are one of t...
متن کاملOne-Against-All Multiclass Classification Based on Multiple Complementary Neural Networks
In general, there are two ways to deal with one-against-all multiclass neural network classification. The first way is the use of a single k-class neural network trained with multiple outputs. Another way is the use of multiple binary neural networks. This paper focuses on the later way in which multiple complementary neural networks are applied to one-against-all instead of using only multiple...
متن کاملApplying Multiple Complementary Neural Networks to Solve Multiclass Classification Problem
In this paper, a multiclass classification problem is solved using multiple complementary neural networks. Two techniques are applied to multiple complementary neural networks which are one-against-all and error correcting output codes. We experiment our proposed techniques using an extremely imbalance data set named glass from the UCI machine learning repository. It is found that the combinati...
متن کاملAnalysis of Multiclass Support Vector Machines
Since support vector machines for pattern classification are based on two-class classification problems, unclassifiable regions exist when extended to problems with more than two classes. In our previous work, to solve this problem, we developed fuzzy support vector machines for one-against-all and pairwise classifications, introducing membership functions. In this paper, for one-against-all cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013